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Abstract

The use of genomic information holds great promise in understanding, diagnosing, and treating human
disease. This promise, however, is tempered by an equally significant threat to individual privacy. Recent
work has shown that even anonymized genomic data is vulnerable to reidentification attacks, demanding
new techniques for protecting data in research and clinical settings. This paper describes Genecloud, a
secure framework for storing and analyzing genomic data. Genecloud balances data access and privacy
considerations by applying persistent governance to sensitive information and to the analytics that oper-
ate upon it, managing the interaction between the two. As a practical application of the framework, we
describe several models for integration with PAPAyA, a full-featured clinical decision support platform
created by Philips to bring next generation sequencing and analysis into the clinic.

1 Introduction

Data fuels scientific discovery, and any technology that restricts access to data has the potential to impede
progress. This risk is particularly acute in healthcare systems, where information that sits idle is information
that is not being used to treat patients or develop new cures. Making data broadly accessible to research is
therefore imperative; the cost of not doing so is too great.

On the other hand, healthcare data is sensitive and its disclosure can be devastating. Genomic information
in particular can reveal an uncomfortable amount of detail about health status and disease risk — not
only for a patient, but for all of a patient’s relatives as well. Recent research has shown that genomic
information, even in an anonymized form, is susceptible to attacks that may compromise privacy [HOM,
GYM]. Unfortunately, protecting privacy rights of patients and research subjects has often been treated
as a secondary concern [LUNJ. Researchers and clinicians who work with genomic data are faced with
two apparently irreconcilable goals: to increase the amount of genomic data available for researchers while
simultaneously preventing reidentification and other attacks on individual privacy.

This paper introduces the Genecloud™ framework, a system designed to mitigate privacy concerns in ge-
nomic applications. To illustrate the use of the Genecloud platform in practice, we consider methods for
providing stronger security and privacy guarantees for the PAPAyA clinical decision support system from
Philips Research North America [JAN].

2 The Genecloud Secure Genomics Framework

Genecloud is a framework for trusted cloud services that store and analyze genetic sequences and other
medical information. It is specifically designed to address issues of genetic privacy by allowing researchers



and clinicians to interact with data through computer programs — trusted analytics — that can be managed
in different ways under policies determined by the various stakeholders in the data.

Under most current access models, researchers that require access to sensitive data are screened carefully,
but then given unfettered access to the information under the assumption that they can be trusted to re-
spect the privacy interests of the subjects. This approach has two fundamental problems: (a) trust is highly
contextual, and (b) trust is intransitive. Placing trust in one principal in a given context should not auto-
matically apply to other principals whom he trusts in turn, nor to the same principal in a different context.

The most significant problem with the prevailing approach is that it expects users to enforce complex poli-
cies that govern the use of data. Once information has been revealed, the burden is on the recipient to act
with discretion, a requirement that is often in conflict with the recipient’s desire to accomplish his scien-
tific task by sharing that information. However, researchers and clinicians increasingly interact with private
data through the intermediary of a computer program, and computer programs can be governed to manage
the risk of privacy violations.

2.1 Distributed Security Building Blocks

In the near future, research in genomics will be conducted across distributed data centers by international
teams of researchers operating on massive, pooled data sets [CAL|]. As promising as they are scientifically,
these new models of collaboration raise novel legal, ethical, and privacy issues. In clinical settings, the
massive storage and computing requirements for genetic data will favor cloud-based or hybrid solutions,
where the same security and distribution issues arise. Supporting a trusted, decentralized, interconnected
storage and computing network will require architectural support for features that are not commonly used
in clinical and research projects today.

Trust management A trust management system allows relevant authorities to make verifiable assertions
about principals and objects in a ecosystem. For example, various authorities may make assertions about
the physical security of a data center, adherence to clinical laboratory guidelines, the identity of a human
principal, the integrity or regulatory compliance of a software module, etc. A trust management system
generates a set of cryptographic credentials that principals use to assert these properties to other actors in
the system in an interoperable manner.

Policy management Different institutions have different policies regarding data access and sharing, use
of computing resources, etc. To ensure interoperability and consistent policy enforcement, these polices
must be encoded and exchanged. For example, if a study participant has consented to the use of their data
by a specific participating institution or research study, but not to broader uses, a policy that expresses
those conditions should be persistently associated with that data, and enforced across the network. Polices
should be dynamic, so that they may be added or withdrawn. Sources of policy are diverse, and include
patients, researchers, their funders and institutions, pharmaceutical companies, and governments.

Auditing Where trust and policy management systems prevent unwanted data accesses before they hap-
pen, the auditing subsystem allows accesses to be examined forensically. Auditing is used to inform data
owners about usage, to meter the use of bioinformatics tools, and to provide crucial support for liabil-
ity analysis in the presence of strict privacy-protection laws such as HIPAA/HITECH in the US and the
European Data Protection Directive.

Encryption and Key Management Once data has been released in the clear, it is virtually impossible to
enforce data management policies or even audit the use of sensitive information. A common technique for
ensuring that data access is governed and auditable is to protect the data through strong encryption, and



then — crucially — to govern the encryption keys. Access to keys should be treated as equivalent to data
access. While many systems incorporate encryption, few provide the required level of key management,
tying it into trust management, policy, and auditing capabilities.

Secure Software If programs that access sensitive data are mobile, users that rely upon the results of those
programs will need assurances that a) the software that they specified is indeed the software that produced
the results they have received, b) other software in the remote system did not modify input data in a way
that may change or compromise the results of the program, c) no keying material or secrets contained in the
program were leaked. Software security is also important to the institutions that are executing the software:
a) verifying that a software module comes from a trusted source, b) ensuring that the software module does
not reveal sensitive data that it should not, e.g. by uploading it to a third-party site, c) limiting access of
programs from certain sources to both computational resources and data.

2.2 Three Execution Models

Genomics has become an essential driver of new insights in biology and medicine, and research increasingly
relies on extensive computational statistical analysis of massive data sets collected from individuals, each
of whom has privacy rights. This section describes the security and privacy properties of three different
models of computation that may be applied in bioinformatics, starting from the current status quo and
building to the Genecloud security model.

The evolution described below reflects specific choices regarding threat models. Specifically, it is not a goal
of this work to provide guarantees that a cloud service provider cannot intercept sensitive information.
As they become more practical, techniques such as fully homomorphic encryption and secure multi-party
computation hold promise in addressing the security of cloud computing. In the meantime, legal structures
provide strong incentives for providers to design processes that limit access to private data. The threat that
motivates the discussion below is that of revealing more information than strictly necessary in performing
a computation. Any non-trivial computation on secure data must reveal some information; the goal is to
limit the disclosure.

The Status Quo In the most common current case, sensitive data is supplied directly to analysis programs
after verifying that the principal who will run the program is authorized. This approach, by far the most
common, has several serious drawbacks from a security point of view, most notably:

= [t assumes that trust is transitive, when in fact, the principal originally authorized may provide sen-
sitive data to others whom he trusts in turn;

= There is no ability to audit usage of the data at a fine-grained level;

= All of the data for a large study needs to be centralized;

= Conservatively, one must assume that all sensitive information has been revealed;

= The policies governing the use of the data cannot change dynamically and are not technically en-

forced; the recipients must be trusted to enforce the policies themselves.

Genomic APIs An increasingly popular technique for storing genomic data addresses some of the secu-
rity issues with direct access. This approach is based on defining interfaces (APIs) to trusted data stores.
Genomic APIs have two significant advantages:

= If the principals that wish to access data are required to authenticate themselves, it is possible to
discriminate amongst different principals and apply potentially different policies to their accesses;



= The system can provide fine-grained access; principals ask only for the data required for a particular
task. The information disclosed — or potentially disclosed [NYH] — can be metered and audited.
This level of auditing also allows potential sources of the leaks to be identified.

On the other hand, this approach means that sensitive data is ultimately returned into an untrusted en-
vironment. To see where this might pose a problem, consider a simple example: given a list of genome
identifiers, determine the number of genomes that have a particular variant. Suppose that the API sim-
ply returns variants by identifier. Under these circumstances, the untrusted code will learn the individual
variants for each of the genomes in the list, which were presumably chosen based on phenotypical charac-
teristics. Those associations may be compromised, weakening security.

This specific problem might be solved by using a more sophisticated API, capable of returning statistics
about the data directly, without revealing individual variants. This type of API still reveals information
about the subjects in the cohort [SAN], but the information revealed may be quantified and is much more
difficult to exploit. This approach effectively moves the information-revealing computation from untrusted
code into a secure, trusted environment.

Genecloud Execution Model The genomic API model described above addresses many of the deficiencies
of the direct access model, especially when computations that may reveal information as a side effect are
performed behind the API, out of reach of untrusted client-side code. Yet it is difficult to design an API
that obscures all such computations, and thus it is inevitable that untrusted code will have access to some
intermediate products, revealing more information than is strictly necessary. This problem can be solved
by creating a general-purpose computational capability within a trusted boundary.

Moving computations into a trusted environment allows for much more precise control over the informa-
tion disclosed, as only the information revealed by the final result is visible to untrusted code. Intermediate
results remain within the trusted boundary. However, allowing arbitrary code to execute within a trusted
environment changes the threat model — malicious or incorrect code might compromise sensitive data,
revealing it in unanticipated ways.
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Figure 1: The Genecloud Execution Model: sandboxing untrusted code.

Genecloud relies on several techniques to mitigate these threats:

= Foreign code may be required to be signed by competent authorities, and the signature checked as a
condition for code loading or execution;



import json, sys, urllib

def query_geneserver (gid, gene, exon)
url = 'http://geneserver.genecloud.com/genome/%$s/variant/gene/%s/exon/%s’ % (gid, gene, exon)
http_handle = urllib.urlopen (url)
return http_handle.read()

if _ name_ == "_ _main_ ":
genome_id = sys.argv([1l]
results = []
for (gene, exons) in ["PIK3CA", [1, 3, 8, 1911, ["PTEN", [3, 6, 7]]:
for exon in exons:
result_raw = query_geneserver (genome_id, gene, exon)
result = json.loads (result_raw)

results += result[’variants’]
print Jjson.dumps ({’variants’: results})

Figure 2: A program to check for variants in particular exons of the PIK3CA and PTEN genes.

= Code signing provides enhanced auditing and reproducibility; it is possible to know precisely which
code accessed information;

= Foreign code executes in a sandboxed environment that prevents it from accessing arbitrary storage
or network locations and allows the system to limit exposure to sensitive data;

= Foreign code may be required to access data through a fine-grained API, improving auditability and
minimizing the amount of personal information that might be compromised by a given computation.

2.21 Performing a Computation

Writing Programs  Programs written for the Genecloud use REST APISs for data access. Each server hosting
sensitive data defines its own semantically appropriate APIs. For example, a server that exposes variant
data presents an interface that allows a user to fetch the data via HTTP:

http://geneserver.genecloud.com/genome/5685c028bf7811e3a21al2470ecld3b5/variant/rsid/rs1933437

Genecloud is language agnostic. For example, the program shown in Figure [2} written in the Python lan-
guage, checks for variants in a given set of genes and exons. Programs handle user I/O using the standard
stdin, stdout, and stderr.

Loading Programs Programs can be developed for the Genecloud in an untrusted environment, as if
developing for a genomic API as shown in Programs may be tested by developers using public data,
over unsecured HTTP to ensure that they work properly. Once a program is tested, it is uploaded to the
Genecloud to be run in a governed environment. This step requires that the developer be authenticated,
and allows the developer to set policies and conditions governing the use of the program.

In order to provide isolation and security, programs in the Genecloud are executed in virtualization con-
tainers. In the current implementation, virtualization is performed using Docker (http://docker.1io),
a virtualization system based on the Linux containers mechanism (Ixc). When user-created programs are
loaded into the Genecloud, the system automatically creates executable images and saves them to a reposi-
tory for retrieval at execution time.


http://docker.io

Trusted Execution In step (1) of Figure(l} a request to execute a given program is received by an Execu-
tion Manager component, which is responsible for managing the lifecycle of a computation running in the
Genecloud. Although not shown in the figure, the request is assumed to have first passed through authenti-
cation and authorization stages ensuring that the principal requesting the execution of a given computation
is allowed by policy to do so. In the Genecloud architecture, this request triggers the loading of third-party
code and a further policy check that places conditions on the code itself, such as requiring a digital signature
from a relevant authority.

In step (2), the Execution Manager creates an execution context for a particular execution of this program.
The execution context allows the Genecloud system to associate sensitive information with the running
instance without placing that information into the address space of the untrusted program, where it might
be vulnerable. In the example of Figure [2| the program is passed an ephemeral genome ID as its first
argument, and the execution context stores its mapping to a real identifier.

The program execution begins in step (3), with the Execution Manager starting the virtual machine instance
and passing in the necessary parameters. As the program executes, it may request data from a data store
over an HTTP API, as shown in step (4). Because the program is running inside a container, its access
to network resources can be restricted to only trusted endpoints. Before these calls reach the data store,
however, several additional things happen:

= The request is potentially transformed using information stored in the execution context. For exam-
ple, in this step, the system might determine how the ephemeral identifiers given to a program as
parameters map to actual identifiers in a data store. Information about the execution context may
also be passed along to the data store as part of the request.

= The request, which was made over plain HTTP, is promoted to HTTPS, with certificates at both the
client and server. This ensures that only certified systems can interact with trusted data stores, and
keeps keying information out of the address space of the third-party program.

= Policies are applied to authorize the request. These policies offer more granular control over access
to sensitive data because they are applied as a computation proceeds, rather than before it begins. In
general, the set of requests a program will make cannot be determined in advance.

* The destination of the request may be rewritten. For example, if a request can be satisfied by a number
of different servers, the proxy may direct the request to the most appropriate.

= The request is logged.

The results of the request — possibly after being transformed again with information in the execution
context — are returned into the address space of the untrusted code. When the program terminates, its
output is captured by the Execution Manager (step 6), audited (step 7), and returned back to the original
requester (step 8). Audits are digitally signed so that they may be verified later. Because the Genecloud
execution system depends on virtualization on known virtual machines, and because the Genecloud stores,
signs, and tags all state information, it is possible to completely recreate a computation at a later time —
and even in a different location — to validate these audits.

Computational Networks In the Genecloud model, potentially information-revealing computations are
sandboxed, limiting access to intermediate products. More complex computations, however, may consist
of multiple stages that can be further isolated in order to improve security and reduce information leakage.

For example, consider a simple computation that evaluates the genetic disease carrier compatibility of two
subjects. It is possible to create a single program that a) looks up two subjects by a phenotypic identifier b)
checks for the presence or absence of a variant and c) determines whether both subjects are carriers. In the
worst case, this single program could leak personally-identifiable information. However, it is possible to
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Figure 3: A simple computational network for carrier compatibility detection

transform this program into a network of three separate programs such that each, run in isolation, cannot
make the connection between genotype and phenotype.

Figure |3|shows a computational network that separates the three different computations into isolated ad-
dress spaces. The Select computation chooses two subjects, presumably based on phenotypical criteria.
Each of these identifiers is mapped by the system into a genome identifier outside of the address space
of either of the programs. Each genome is then assessed separately in a Screen process, which checks for
the presence of a particular variant and passes a boolean value on to the Combine process, which performs
a logical AND to determine carrier compatibility. Although the computation performed by this network
is the same as that computed by a single program, the amount of personally-identifiable information that
might possibly be released is greatly reduced.

Genecloud provides a mechanism for specifying computational networks such as the one shown in Figure
The system takes care of the necessary transformations between modules, lifecycle management, storage
and transport of intermediate products, and returning the final result.

3 Securing Clinical Decision Support: PAPAyA

In this section, we explain how the security models described above are used to enhance security and
privacy for PAPAyA, the platform for clinical decision support created by Philips Research.

PAPAyA is a software platform designed around management, analysis, and delivery of clinical sequencing
data in an oncology setting. PAPAyA can be deployed wholly within the hospital IT infrastructure or in a
cloud-based environment, allowing clinical users to access the platform through a browser. The interface
is designed to allow oncologists and pathologists to explore and interact with clinically relevant informa-
tion, presented through a sequence of modules that address specific clinical questions. The utility of this
approach has been demonstrated in early studies such as [ROY]|. The screen capture in Figure[d]shows sev-
eral of these clinical modules operating on simulated patient data. The module results are based on both
specimen-specific information and patient population data.

PAPAyA provides a platform for executing two different types of computations: modules and pipelines.
Modules may be thought of as “in-silico assays” that address specific clinical questions such as calling ac-
tionable mutations or identifying targetable genomic aberrations like deletions or gene fusions. Modules
are implemented as plug-ins to the system whose source code, input and output parameters, versioning,
and dependencies are managed by the PAPAyA platform. The results of module computations — which
may depend upon the results of other modules, clinical knowledge bases, and the like — are stored in a
database and presented by the web interface on demand. While modules answer specific clinical ques-
tions, pipelines typically perform more computationally intensive processing that generates intermediate
products that ultimately serve as input to clinical modules.

For example, the module that calls actionable mutations answers clinical questions about suitability for
trials, predisposition to certain diseases and conditions, and the probability that a patient may respond to a
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Figure 4: The PAPAyA Web Interface

specific targeted therapy. This module compares germline and tumor DNA sequences in order to identify
potentially actionable somatic mutations in the tumor and annotates them for clinical relevance.

3.1 Subsystems for Data, Analytics, Workflow, and Policy

This section introduces PAPAyA subsystems for data, analytics, workflow, and policy management, high-
lighting some of the security and privacy issues pertaining to each. The system is implemented according
to a Model-View-Controller (MVC) architecture such as the one shown on the left side of Figure @ The
implementation encompasses not only genomic data and interpretation, but also storage and management
of modules and pipelines, workflow data, execution logs, and biological clinical knowledge bases.

1. Data Management

(a) Genomic data management — This subsystem manages genomic data and analysis, analyzing ge-
nomic aberrations in individual genomes, exomes, and transcriptomes. The genomic data man-
agement system spans multiple locales, from sequencing centers to local and cloud computing
environments to clinical settings. As a result, PAPAyA is built on a trust management framework
that enables secure integration across local and remote environments.

(b) Knowledge management — Includes knowledge bases that contain valuable clinical evidence and
information on biological pathways, biomarkers, and therapies associated with these markers.
The knowledge bases themselves are sensitive data that must be protected and versioned.

2. Module and Pipeline Management In-silico assays consist of multiple pipelines and modules, ex-
ecuted in a particular sequence, that implement a specific multivariate index assays based on genomic
information managed in PAPAyA. The individual modules and pipelines are managed and versioned
to ensure integrity and regulatory compliance. This subsystem provides several features that require
trust management and integrity protection:



= A framework for pipeline management taking into account versions of pipelines that are specific
for certain sequencing protocols and chemistry;

= A trusted IPR broker to record licensed IPR used in pipelines under various business models;
= Change management and logging auditing information on the updates of specific pipelines.

3. Workflow Execution Management In order to understand potential risks to privacy for genomic
data in the system, it is necessary to control and audit data accesses. In executing in-silico assays,
access should be restricted to only the chromosomal regions that are required for the assay. Control
over access at this granularity requires:

= A trusted execution framework supporting application-specific modules and workflows and
managing their data access (cf. below) ;

» A framework for managing intermediate data structures generated during a workflow execution
and handling the interaction between stored genomic data and the visualization modules.

4. Policy management framework In the context of PAPAyA, the policy management subsystem is
concerned with issues such as the reporting of incidental findings, rules for consistent data manage-
ment within an institution, and presentation of information in different jurisdiction When rules
differ across jurisdictions, the policy management system must be able to harmonize them or raise an
exception so that they may be resolved manually.

3.2 Security of Various Processing Stages

The data processing workflow in PAPAyA is divided into four phases, each defined by its own specific
security and privacy considerations. Through these four phases, sensitive information progresses from
high-volume undifferentiated data to actionable low-volume data that can be tied to specific phenotypic
traits. The four processing phases for variant calling using exome data are shown in Figure[5land described
in more detail below.

Pipeline
Library

Module Clinical
Store Databases

Genomic
Results

Sequencing »|  Pipeline ‘ Module | R

Data Execution |

Execution
—
Auxiliary Bio
Databases

GUI and
Visualization

Intermediate
Results

| Il mn v

Figure 5: Exome Processing Stages in PAPAyA. (I) Sequencing and Ingestion (II) Pipelines (III)
Modules (IV) Visualization and User Interaction. While stage (IV) happens in a clinical setting
such as a hospital, stages (I)-(III) typically occur in remote computing environments such as a
sequencing lab, a cloud computing environment, etc.

ndividual states in the United States have widely divergent policies on matters of healthcare information management.



Sequencing and Ingestion In the first phase, a set of raw, unaligned reads is produced at a sequencing
machine and transported (in FASTQ format) into the system for further processing. At this stage, it is not
meaningful to make a policy distinction between different reads. Although the set of reads contains all of
the sensitive information in the genome, this information is unorganized. Because the reads are not yet
aligned, and in a random order, the reads are equivalent from a security point of view. The techniques
appropriate at this phase will involve protection of the raw read data and secure transmission to a server
for further processing.

Pipelines In this next stage, the raw reads are transformed into a set of annotated variants, first by align-
ment to a reference (producing BAM or CRAM files), then by variant calling and annotation. The annotated
variants are stored in a database in PAPAyA, but represent the information that would typically be stored
in a VCF file in a file-based system. This process organizes the information in a way that it would be more
immediately useful to an attacker, but the data volume is still large. The programs that perform alignment
require access to all of the reads on an equal basis, so there is no requirement to differentially protect various
parts of the data. The system performing the alignment should protected by standard computer security
techniques such as authentication of administrators, role-based access control, security audits, and the like.
Pipelines may be executed without direct human interaction, in which case no authentication and autho-
rization of end users is required. Third-party pipelines could be supported using the techniques described
for modules, below.

Modules The ultimate output of the previous phase is an annotated set of variants, which are extremely
private and may be subject to different policies depending upon the relative sensitivity of the variants.
When running modules on this data, it is important to know who asked for a given module to be executed,
for what purposes, and whether they are authorized to make the request. Ideally, the modules should
run inside of a secure environment so that their access to sensitive data may be controlled more carefully,
and their ability to perform illegitimate accesses (e.g. to post sensitive data in a third-party site) may be
controlled. This phase is the most likely candidate for the techniques described in

Visualization and User Interaction In the previous phase, computations are performed without neces-
sarily revealing the results of these computations to users; the results of the computations may be stored in
a database for later access. In this phase, on the other hand, sensitive information may be revealed to an
end user, which requires that the user be authenticated, and any policies governing the user’s access to the
output of a given module be checked.

3.3 Module Integration Scenarios

This section describes integration scenarios for executing PAPAyA modules in the Genecloud framework.

Treat Modules as Trusted Code In some circumstances, the genomic API model described in may
provide sufficient protection. Because PAPAyA is built on an object-relational model (ORM), modules can
be adapted in a natural way to interact with a secure API. An ORM allows developers using web services
frameworks such as Ruby on Rails or Django to interact with automatically-generated model objects whose
class corresponds to a database table, and whose object instances correspond to rows within that table.
Many web frameworks allow developers to interact transparently with a model object stored in a remote
server over a REST API in precisely the same manner as for a local object.

As an example of the Object/REST mapping, it is possible to translate a statement that would normally re-
trieve a database record like patient .rsid (1933437) intoa URL (as shown in §2.2.1), where the genome
ID is associated with the patient object in the local database and the path is constructed automatically by
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the Object/REST mapping layer. This interaction is shown as interaction (A) in Figure 6| The request may
also be coupled with an authentication mechanism that allows the code making the request to be identified
and audited.
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Figure 6: Integration Strategies. Numbered steps are exactly as in a standard MVC web application.
(A), (B), and (C) illustrate various strategies for interacting with Genecloud. In (A), a model object
corresponds to an entry accessed via a REST API through an Object/REST adapter. In (B) and (C),
controller logic triggers execution of code in Genecloud either directly (B) or via a model object
intermediary (C).

Integration at the API level is appropriate when modules:
= Come from a trusted source that does not need to be authenticated during the transactions;
* Have been analyzed for undesired behavior;
* Do not require proof of integrity for access to the sensitive data;

= Are executed in a trusted environment that can ensure that the sensitive information being retrieved
by the modules cannot be compromised by other components;

= Can pass intermediate products between one another safely.

Sandboxing Individual Modules In cases where one or more of the conditions above do not hold, some
protection may be afforded by applying the sandboxing technique described in at the individual mod-
ule level. Approaches for implementing this type of module-level sandboxing include:

= Sandboxed modules may be invoked by controller code directly. If desired, the modules themselves
can use the Object/REST mapping exactly as described above, with the adapter being injected as a
dependency into the virtualization container. This approach may work well in cases where there are
not many dependencies on other model objects, or where the necessary parameters can be passed to
the sandboxed modules as parameters. See interaction (B) in Figure [6}

* By adding a level of indirection; rather than mapping instance variables and method accesses to REST
calls that return those items, an object mapping can convert those requests into commands to execute
the sandboxed models, passing in the necessary parameters. See interaction (C) in Figure|6}
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Using this integration strategy, the system can safely handle third-party code, cryptographically verify code
integrity, and so forth. However, it does not address the passing of intermediate products, which are still
returned to the web application and must be trusted in that environment.

Sandboxing a Computational Network To mitigate risk to intermediate products, an entire computa-
tional network can be executed in the Genecloud framework. This approach, a superset of those described
above, would involve specifying the computational network, loading all of the required modules, and then
ordering an execution of the network within the trusted environment. This approach may also increase
performance, as it avoids repeated roundtrips back to the web application made solely for the purpose of
moving data from one processing stage to the other.

4 Conclusions

Taking patient rights seriously is imperative if the use of next generation sequencing data and analytics
are to enter mainstream clinical practice. The standard techniques for addressing patient privacy, such as
anonymization, have been shown to be vulnerable to reidentification attacks. As a result, the research and
clinical communities have been moving in the direction of genomic access via APIs, enabling auditing,
authentication, and some degree of policy management. In this paper, we have shown the limits of this
model and described an alternative in which the interaction between secure data and the analytics that
operate upon them is governed, reducing the potential threats to patient privacy. We have demonstrated
that these techniques can be practically integrated with standard Model-View-Controller web applications
in several different ways, depending on specific threat models.
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